HAUTE ÉCOLE D'INGÉNIERIE ET DE GESTION DU CANTON DE VAUD

www.heig-vd.ch

Kontrolle der Zuverlässigkeit und der Genauigkeit eines BIM-Modells

Bertrand CANNELLE, 29. August 2019

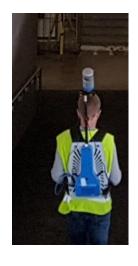
Der Bahnhof von Vallorbe - Erfassung → virtueller Besuch

Kontext - Forschungsprojekt

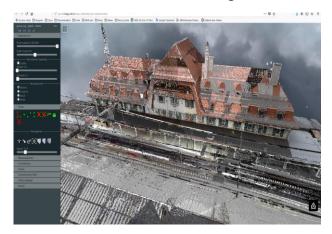
- Partner (seit Projektbeginn 2017)
 - SBB
 - Bernard Cherix, Architekt
 - Labor für Topometrie des Insit Instituts
- Ziele SBB:
 - Festlegung eines Protokolls zur Erfassung, allgemeinen Georeferenzierung, Strukturierung der Daten sowie Speicherung und Übertragung (siehe Session 2: « La gare de Vallorbe comme si vous y étiez » von Adrien GRESSIN
 - Erstellung des BIM-Modells des aktuellen Gebäudes
 - Simulation und Weiterentwicklung auf Basis des Modells

三 早

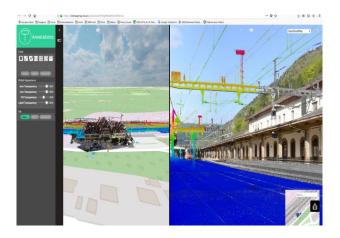
Der Bahnhof von Vallorbe – Basisdaten


Für das BIM-Modell

- GNSS-Punktnetz für die Georeferenzierung
 → 10 in RTK SwissPos festgelegte Aussenpunkte
- 3D-Scan mittels Laserscanning:
 - Scanner: Riegl VZ1000
 - → Aussenerfassung + Bilder
 - Scanner: Faro Focus^{3D} 120
 - → Detaillierte Erfassung des Inneren
 - Mobiler Scanner: Heron Color AC-1
 - → Schnelle Erfassung
- Panoramabilder



Der Bahnhof von Vallorbe - Hilfsmittel für die Erfassung



Für das BIM-Modell

- Erstellungs- und Veröffentlichungsportal für 3D-Punktwolken (Potree)
- Erstellungs- und Veröffentlichungsportal für virtuelle Touren (Panotour)
- GIS-Erstellungs- und Veröffentlichungsportal (Orbit GT)

Erstellung des BIM-Modells

Der Bahnhof von Vallorbe – Pflichtenheft

Für das BIM-Modell

• Erstellung des Modells mit LOD 200: « Die BIM-Objekte können als generische 3D-Elemente dargestellt werden, die bspw. aus einer mit einem CAD-Programm erstellten Basis-Library stammen. Nicht geometrische Eigenschaften können mit der 3D-Darstellung verknüpft werden. »

Je nach Verwendungszweck: Renovierung, Berechnungen der Modelle des Freiraums für die Zugdurchfahrt, Anpassungen für Personen mit eingeschränkter Mobilität, kann die Bezeichnung der generischen Elemente Probleme machen.

Empfehlung: Nennen des Verwendungszwecks des BIM-Modells, damit es für diesen Verwendungszweck geeignet ist (Visualisierung, Erhaltung des Gebäudes, Renovierung...)

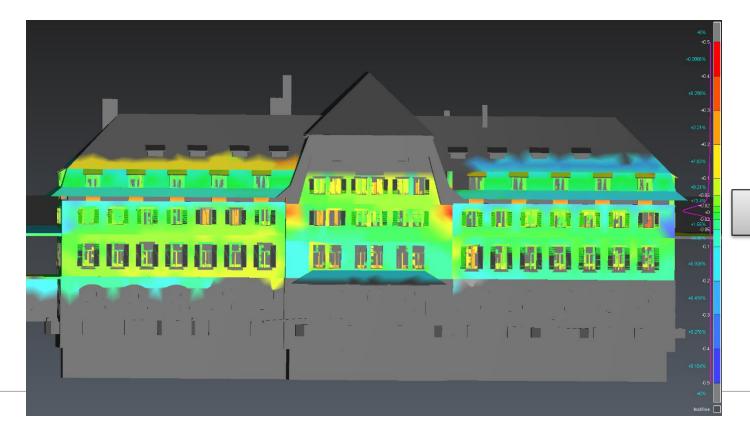
Kontrolle der Georeferenzierung

- Sämtliche Daten werden in LV95 georeferenziert
 - Vorteile:
 - Nationales System
 - «Einfache» Integration anderer Datenquellen für die Umgebung (swisstopo...)
 - Ergänzungen sind bei Fehlen einfach vorzunehmen
 - Keine Nachverfolgbarkeit des/der lokalen Bezugspunkts/e
 - Nachteile:
 - BIM-Programme lassen sich nicht «leicht» in grobe Koordinaten einbinden (Verlust der Präzision, Probleme bei der Visualisierung...)
 - Die Achsen sind nicht in Bezug auf die Gebäudemauern ausgerichtet

In unserem Fall bestand keine Möglichkeit der Nachverfolgung des lokalen Bezugspunkts beim BIM-Modell:

- Unbekannte Translation und Rotation
 - => Verwendung der bestmöglichen Übereinstimmung des Modells und der georeferenzierten Punktwolke, um diese Parameter wiederzufinden

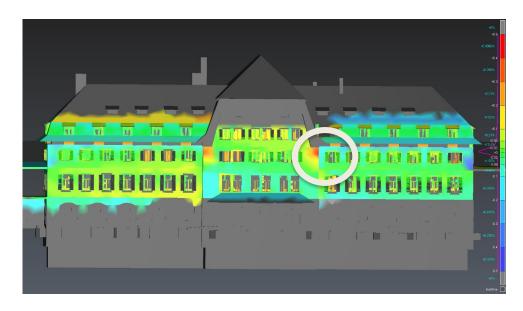
Empfehlung: Speicherung und Nachverfolgbarkeit sämtlicher geometrischer Veränderungen, um vom Geländebezugssystem zum Modellbezugssystem (und umgekehrt) zu gelangen => Möglichkeit, Ergänzungen problemlos vorzunehmen

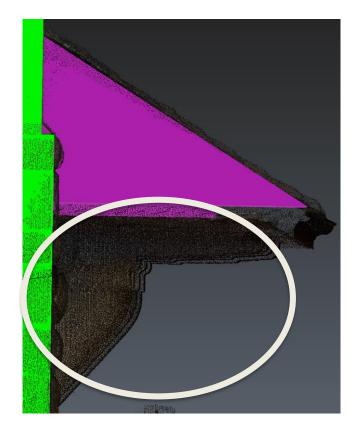


Vollständige Kontrolle des Modells

- Vergleich Netz/Wolke mittels 3DReshaper
 - Wolke: die georefenzierten Wolken werden auf das Modellbezugssystem mittels der vorab berechneten Translation und Rotation abgebildet
 - Netz: BIM-Modell

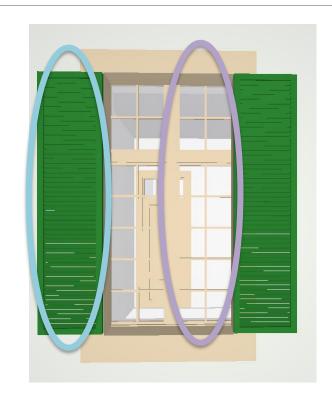
+- 5 cm

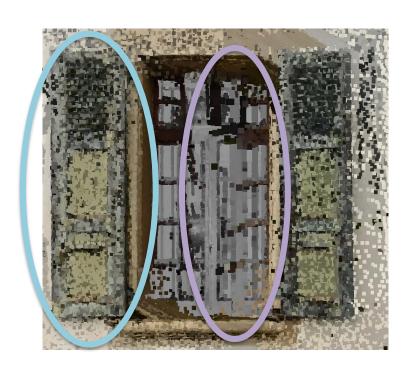



isui 🛱

Einzelheiten der Modellierung: Aussenfassade

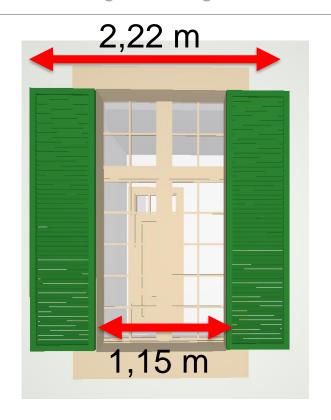
- Das Modell kann mit LOD 200 hinsichtlich des zukünftigen Verwendungszwecks übereinstimmen:
 - Visuelle Verwendung des Modells OK
 - Archivierung der architektonischen Elemente nicht OK

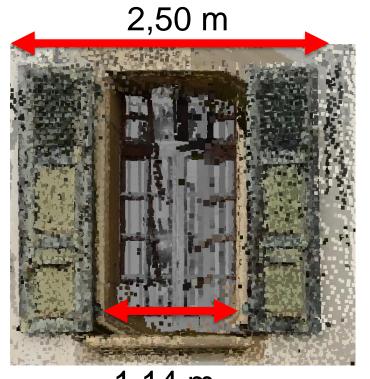




Einzelheiten der Modellierung: Fenster

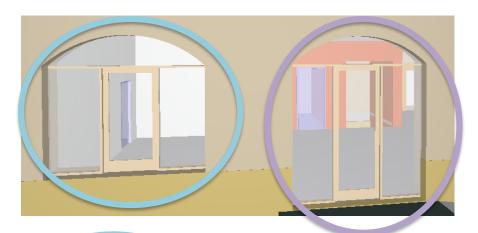
Wahl der Modellierung


Die Gesamtform ist richtig, allerdings ist das Modell eventuell wirklichkeitsgetreu (oder auch nicht)



Einzelheiten der Modellierung: Fenster

Wahl der Modellierung im Bezug auf die Abmessungen:


1,14 m

Die Grösse der Fenster ist richtig, die Fensterläden weisen jedoch nicht die richtigen Abmessungen (und die richtige Position) auf

insit

Einzelheiten der Modellierung: Gebäudeeingang

- Die Form der Maueröffnungen/des Fensters ist richtig
- Die Fenster-/Tür-Objekte sind generisch => die Einfassungen sind nicht gleich

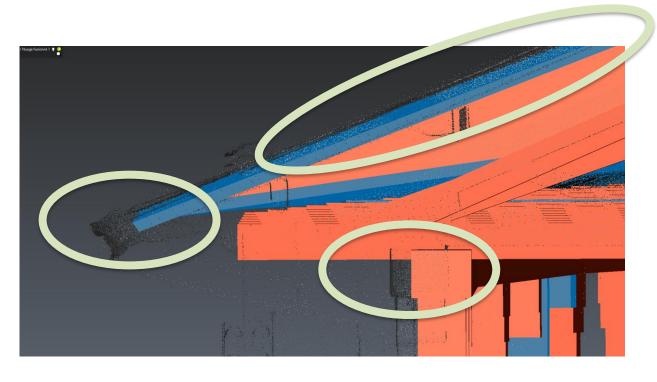
 Das Modell kann mit LOD 200 hinsichtlich des zukünftigen Verwendungszwecks übereinstimmen

∄ insit

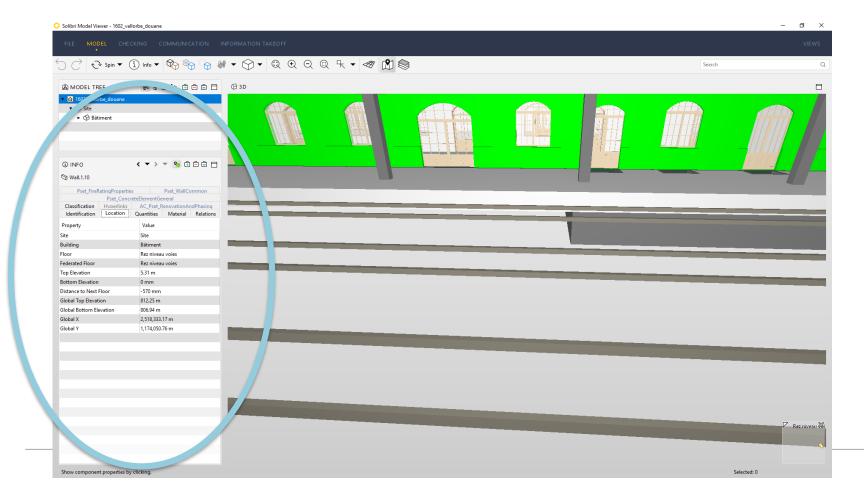
Einzelheiten der Modellierung: Innentreppe

Die Höhe der Stufen ist richtig, die planimetrische Position «wird abgeleitet»:

- Visuelle Verwendung des Modells OK
- Verwendung zur Anpassung der Treppe für Rollstühle nicht OK



Einzelheiten der Modellierung: Modellierung der Dächer

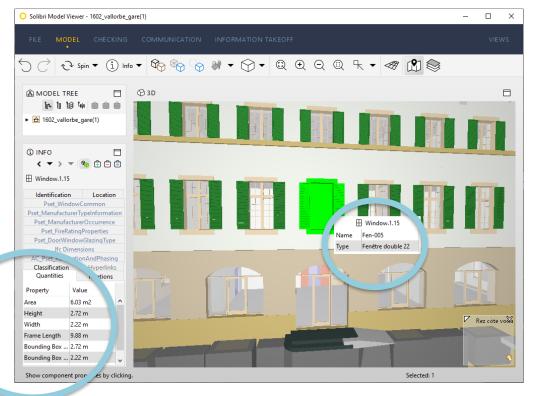

- Dicke des Dachs / der Elemente?
- Länge?
- Neigung?

Forschungsgebiete

Dokumentation des Modells bei seiner Erstellung

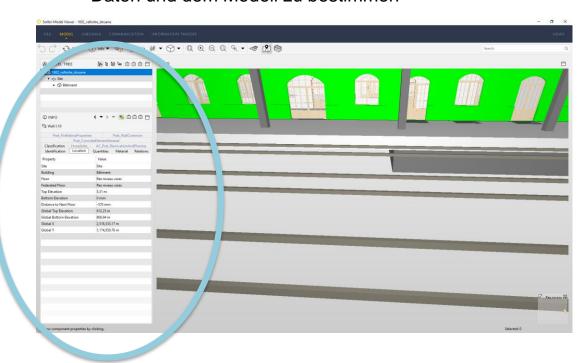
• Das Hinzufügen eines Attributs soll es ermöglichen, die Datenquelle zu identifizieren (Messung mit dem Doppelmeter, 3D-Punktwolke, gescannte Pläne...)

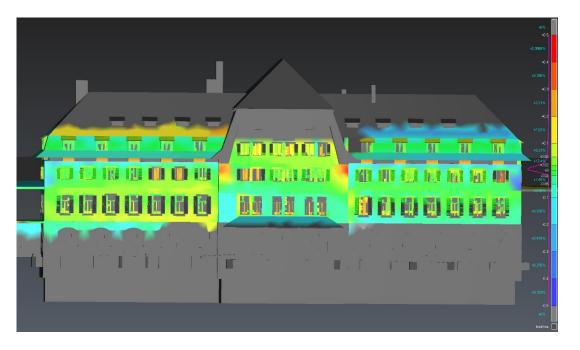
Sul 🕸


Forschungsgebiete

Retro-Engineering basierend auf IFC

- Automatische Erkennung (mittels IFC) der mit «Copy-Paste» erstellten Elemente
 - Verwendung der Attribute des Modells (Bbox, Oberfläche, usw....) für die Elemente und die Erzeugung einer Liste identischer Elemente




Forschungsgebiete

Automatische geometrische Dokumentation

Das (automatische) Hinzufügen eines Attributs soll es ermöglichen, die geometrischen Unterschiede zwischen den erfassten Daten und dem Modell zu bestimmen

www.heig-vd.ch

Vielen Dank für Ihre Aufmerksamkeit

