Towards Crowd-Sourced 3D Indoor Reconstruction Based on Grammar Support

Susanne Becker

3DGI 2016 – 3D-Geoinformation in Aktion Olten, 29th September 2016

3D Indoor Models

How to Get 3D Indoor Models?

BIM world

ifp

- high geometric and semantic detail
- manual creation

3D GIS world

- mostly pure geometry models with limited geometric detail
- focus on automatic derivation from observation data
- High costs in money, time and expertise for data acquisition

Crowd-Based Mapping

- OpenStreetMap (since 2004)
 - Crowd-based data acquisition for creating 2D maps of the world

© https://www.openstreetmap.de/karte.htm

- DFG-Project Com'N'Sense (since 2013)
 - Idea: Private users automatically create 2D and 3D indoor models with their smartphones while passing through public buildings (Peter et al., 2013; Philipp et al., 2014)

- Goal: robust automatic approach for 3D indoor reconstruction from erroneous or incomplete observation
- Powerful means: formal grammars

Formal Grammar

ifp

- Defines a formal language an amount of sequences of symbols (amount of words)
 - Symbols ⇒ alphabet
 - *E.g.*: V₁, V₂, ..., t₁, t₂, ...
 - Rules for the generation of sequences of symbols ⇒ syntax

■ *E.g.*:
$$\mathbf{p_1}$$
: $\mathbf{t_1} < \mathbf{V_1} > \mathbf{t_2} \rightarrow \mathbf{V_2} \mathbf{t_1}$: prob $\mathbf{p_2}$: $\mathbf{t_2} < \mathbf{V_2} > \mathbf{t_3} \rightarrow \mathbf{t_2}$: prob :

- Exemplary grammar:
 - Symbols:
 - V, 0, 1
 - Rules:
 - p_1 : $V \rightarrow V0$

 \Rightarrow Formal language L = { 1, 10, 100, ... }

Formal Grammars for modeling geometric structures

Iterative Grammar-Based Approach

Iterative process of grammar application and grammar update

3D Indoor Grammar Design Decisions

- Focus
 - Office buildings
 - Public buildings (e.g. schools, hotels, hospitals etc.)
- Characteristics of such buildings
 - Buildings are traversed by a system of hallways.
 - The system of hallways divides each floor into hallway-spaces and non-hallway-spaces.
 - Non-hallway-spaces can be further divided into smaller room units mostly arranged in a linear sequence parallel to the adjacent hallway.
- Grammar concept
 - Hallway system (linear structures)
 - ⇒ L-system
 - Room configurations (spatial partitioning)
 - ⇒ split-grammar

floorplan of ifp

3D Indoor Grammar L-System for Modeling Hallways

- $G^{hallways} = (V, \omega, P)$
 - V: set of attributed symbols (modules),
 - ω : axiom (initial hallway segment)
 - P: production rules
 - related to the enriched L-system for modeling 2D streets (Parish & Müller, 2001)
 - Idea: organize the setting of attributes, probabilities and the constraints induced by the geometric environment through external functions:

3D Indoor Grammar L-System for Modeling Hallways

Production rules

- ω : $\mathbf{R}(ACTIVE)$? $\mathbf{I}(\theta_{init}, UNASSIGNED)$
- p1: $\mathbf{R}(mode) > ?\mathbf{I}(\theta, state) : state == SUCCEED \&\& mode == ACTIVE$ { $LayoutSetting (mode, \theta) sets \theta_p[0-4] \} \rightarrow + (\theta. angle) \mathbf{F}(\theta. len)$ $\mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[1]) \mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[2]) \mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[3])$ $\mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[4]) \mathbf{R}(ACTIVE)?\mathbf{I}(\theta_p[0], UNASSIGNED)$
- p₂: $\mathbf{R}(mode) > ?\mathbf{I}(\theta, state) : state = = FAILED \rightarrow \varepsilon$
- p3: $\mathbf{B}^{\mathbf{h}}(mode,\theta)$: $mode==ACTIVE \rightarrow [\mathbf{R}(mode)?\mathbf{I}(\theta,UNASSIGNED)]$
- p4: $?\mathbf{I}(\theta, state) : state == UNASSIGNED$ { ConsistencyConstraints (θ) adjusts $state, \theta$ } \rightarrow $?\mathbf{I}(\theta, state)$
- p5: $\mathbf{PI}(\theta, state)$: $state! = UNASSIGNED \rightarrow \epsilon$
- p6: $\mathbf{B}^{\mathbf{v}}(mode, \theta)$: mode = = INACTIVE{ ActivationControl sets mode} $\rightarrow \mathbf{B}^{\mathbf{v}}(mode, \theta)$
- p₇: $\mathbf{B}^{v}(mode,\theta)$: state = SUCCEED && mode = ACTIVE $\rightarrow [\mathbf{Q}(mode)?\mathbf{I}(\theta,UNASSIGNED)]$
- p8: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state) : state == SUCCEED \&\& mode == ACTIVE$ { $\mathbf{LayoutSetting}(mode, \theta) \text{ sets } \theta_p[0-3] \} \rightarrow + (\theta. angle) \mathbf{U}(\theta. len)$ $\mathbf{B^h}(ACTIVE, \theta_p[1]) \mathbf{B^h}(ACTIVE, \theta_p[2]) \mathbf{B^v}(INACTIVE, \theta_p[3])$ $\mathbf{R}(ACTIVE) \mathbf{?I}(\theta_p[0], UNASSIGNED)$
- p9: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state) : state == FAILED \rightarrow \varepsilon$

horizontal growth process

yertical growth process

3D Indoor Grammar Split-Grammar for Modeling Rooms

- $G^{rooms} = (N, T, S, R)$
 - N = {Space}
 - $T = \{..., space_i, space_i, ...\}$
 - S = Space

- $R_{i}^{\text{RepeatSplit}}: Space \rightarrow Split_{i}^{\text{Space}^{r}} \circ \cdots \circ Split_{i}^{\text{Space}^{r}} \circ Split_{i}^{\text{Space}}$
- $\qquad \qquad \mathbf{R}^{\text{StringSplit}}_{\mathbf{ij...k}}: Space \rightarrow Split_{k}^{Space^{r}} \circ \cdots \circ Split_{j}^{Space^{r}} \circ Split_{i}^{Space}$
- $R_{ab...c}^{MultiSplit}: Space \rightarrow Split_c^* \circ \cdots \circ Split_b^* \circ Split_a^{Space}$ with $* = Space \in \text{previously generated Spaces}$
- $R^{\text{Merge}}: Space^{l} Space^{r} \rightarrow Merge^{Space^{l}, Space^{r}}$ with $Merge^{Space^{l}, Space^{r}} = Space^{l} \cup Space^{r}$
- $\qquad \qquad R^{\text{Instantiation}}: Space \rightarrow space$

Iterative Grammar-Based Approach

Iterative process of grammar application and grammar update

Instantiation of Individual Grammars

- Gindoor = (Ghallways, Grooms)
 - Ghallways
 - ω : $\mathbf{R}(ACTIVE)$? $\mathbf{I}(\theta_{init},UNASSIGNED)$
 - p1: $\mathbf{R}(mode) > 2\mathbf{I}(\theta, state) : state == SUCCEED \&\& mode == ACTIVE \\ \{ LayoutSetting(mode(\theta)) \text{ sets } \theta_p[0-4] \} \rightarrow +(\theta.angle)\mathbf{F}(\theta.len) \\ \mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[1]) \mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[2]) \mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[3]) \\ \mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[4]) \mathbf{R}(ACTIVE) \mathbf{P}(\theta_p[0], UNASSIGNED)$
 - p₂: $\mathbf{R}(mode) > \mathbf{PI}(\theta, state) : state = = FAILED \rightarrow \epsilon$
 - p3: $\mathbf{B}^{\mathbf{h}}(mode,\theta)$: $mode==ACTIVE \rightarrow [\mathbf{R}(mode)?\mathbf{I}(\theta,UNASSIGNED)]$
 - p4: $\mathbf{?I}(\theta, state)$: state == UNASSIGNED{ $Consistency Constraints(\theta)$ } adjusts $state, \theta$ } $\rightarrow \mathbf{?I}(\theta, state)$
 - p5: $\mathbf{?I}(\theta, state)$: $state!=UNASSIGNED \rightarrow \varepsilon$
 - p6: $\mathbf{B}^{\mathbf{v}}(mode,\theta)$: mode == INACTIVE{ActivationControl sets mode} $\rightarrow \mathbf{B}^{\mathbf{v}}(mode,\theta)$
 - p7: B^v(mode,θ): state==SUCCEED && mode==ACTIVE
 →[Q(mode)?I(θ,UNASSIGNED)]
 - ps: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state)$; state = SUCCEED & mode = ACTIVE { $LayoutSetting(mode \theta)$ sets $\theta_p[0-3]$ } $\rightarrow +(\theta.angle)\mathbf{U}(\theta.len)$ $\mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[1])\mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[2])\mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[3])$ $\mathbf{R}(ACTIVE)\mathbf{?I}(\theta_p[0], UNASSIGNED)$
 - p9: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state) : state == FAILED \rightarrow \epsilon$
 - rules can stay fix

Grooms

- $R_i^{SingleSplit}: Space \rightarrow Split^{Space}(\mathbf{n}_i, d_i)$ with $Split^{Space}(\mathbf{n}_i, d_i) := Split_i^{Space} = Space^{-l} Space^{-r}$
- $R_i^{RepeatSplit}: Space \rightarrow Split_i^{Space} \circ \cdots \circ Split_i^{Space} \circ Split_i^{Space}$
- $R_{ii...k}^{StringSplit}: Space \rightarrow Split_k^{Space^r} \circ \cdots \circ Split_i^{Space^r} \circ Split_i^{Space}$
- $R_{ab...c}^{MultiSplit}: Space \rightarrow Split_{c}^{*} \circ \cdots \circ Split_{b}^{*} \circ Split_{a}^{Space}$ with $* = Space \in previously generated Spaces$
- R^{Merge} : $Space^{l}Space^{r} \rightarrow Merge^{Space^{l},Space^{r}}$ with $Merge^{Space^{l},Space^{r}} = Space^{l} \cup Space^{r}$
- $R^{Instantiation}: Space \rightarrow space$

Instantiation of the L-System Inverse Procedural Modeling

- To determine:
 - layout parameters: hallway lengths, orientations, widths, probabilities
 - control image: 2D probability distribution for vertical growth
- Various observation data can be used as data source, e.g.:
 - traces from foot-mounted MEMS/IMU systems (Philipp et al., 2014)
 - 3D point clouds (current work)

Instantiation of Individual Grammars

- Gindoor = (Ghallways, Grooms)
 - Ghallways
 - ω : $\mathbf{R}(ACTIVE)$? $\mathbf{I}(\theta_{init},UNASSIGNED)$
 - p1: $\mathbf{R}(mode) > 2\mathbf{I}(\theta, state) : state == SUCCEED \&\& mode == ACTIVE \\ \{ LayoutSetting(mode(\theta)) \text{ sets } \theta_p[0-4] \} \rightarrow +(\theta.angle)\mathbf{F}(\theta.len) \\ \mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[1]) \mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[2]) \mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[3]) \\ \mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[4]) \mathbf{R}(ACTIVE) \mathbf{P}(\theta_p[0], UNASSIGNED)$
 - p₂: $\mathbf{R}(mode) > ?\mathbf{I}(\theta, state) : state == FAILED \rightarrow \varepsilon$
 - p3: $\mathbf{B}^{\mathbf{h}}(mode,\theta)$: $mode==ACTIVE \rightarrow [\mathbf{R}(mode)?\mathbf{I}(\theta,UNASSIGNED)]$
 - p4: $\mathbf{?I}(\theta, state)$: state == UNASSIGNED{ $Consistency Constraints(\theta)$ } adjusts $state, \theta$ } $\rightarrow \mathbf{?I}(\theta, state)$
 - p5: $\mathbf{?I}(\theta, state)$: $state!=UNASSIGNED \rightarrow \varepsilon$
 - p6: $\mathbf{B}^{\mathbf{v}}(mode,\theta)$: mode == INACTIVE{ActivationControl sets mode} $\rightarrow \mathbf{B}^{\mathbf{v}}(mode,\theta)$
 - p7: B^v(mode,θ): state==SUCCEED && mode==ACTIVE
 →[Q(mode)?I(θ,UNASSIGNED)]
 - ps: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state)$: state == SUCCEED & mode == ACTIVE { $LayoutSetting(mode, \theta)$ sets $\theta_p[0-3]$ } $\rightarrow +(\theta.angle)\mathbf{U}(\theta.len)$ $\mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[1])\mathbf{B}^{\mathbf{h}}(ACTIVE, \theta_p[2])\mathbf{B}^{\mathbf{v}}(INACTIVE, \theta_p[3])$ $\mathbf{R}(ACTIVE)\mathbf{?I}(\theta_p[0], UNASSIGNED)$
 - p9: $\mathbf{Q}(mode) > \mathbf{?I}(\theta, state) : state == FAILED \rightarrow \epsilon$
 - rules can stay fix

Grooms

- RisingleSplit: $Space \rightarrow Split^{Space}(\mathbf{n}_i, d_i)$ with $Split^{Space}(\mathbf{n}_i, d_i) := Split^{Space} = Space^{-l} Space^{-r}$
- $\mathbb{R}_{i}^{\text{RepeatSplit}}: Space \rightarrow Split_{i}^{\text{Space}^{r}} \circ \cdots \circ Split_{i}^{\text{Space}^{r}} \circ Split_{i}^{\text{Space}}$
- $\mathbb{R}^{\text{StringSplit}}_{ii...k}$ $Space \rightarrow Split_k^{\text{Space}^r} \circ \cdots \circ Split_j^{\text{Space}^r} \circ Split_i^{\text{Space}}$
- $\mathbb{R}^{\text{MultiSplit}}_{\text{ab...c}}$: $Space \rightarrow Split_c^* \circ \cdots \circ Split_b^* \circ Split_a^{Space}$ with $* = Space \in \text{previously generated Spaces}$
- R $^{\text{Merge}}$: $Space^{l}Space^{r} \rightarrow Merge^{Space^{l}}, Space^{r}$ with $Merge^{Space^{l}}, Space^{r} = Space^{l} \cup Space^{r}$
- $R^{Instantiation}: Space \rightarrow space$
- rules have to be set for the split of
 - → the 3D building shell into floors
 - → the floors into hallways and non-hallways
 - → the non-hallways into rooms

Instantiation of the Split Grammar Inverse Procedural Modeling

Modeling room layouts

Split rules:

•
$$\mathbf{R}_{\mathbf{a}}^{\mathsf{Single}} : \mathsf{Space} \to \mathsf{Split}^{\mathsf{Space}}(\mathbf{n}_{\mathbf{a}} | d_{\mathbf{a}})$$

•
$$R_b^{Single}$$
: $Space \rightarrow Split^{Space}(n_b | d_b)$

•
$$\mathbf{R_c^{Single}}: Space \rightarrow Split^{Space}(\mathbf{n_c} | d_c)$$

•
$$\mathbf{R}_{\mathbf{d}}^{\text{Single}}$$
: $Space \rightarrow Split^{Space}(\mathbf{n}_{\mathbf{d}} | d_{\mathbf{d}})$

•
$$R_e^{Single}$$
: $Space \rightarrow Split^{Space}(n_e | d_e)$

•
$$R_1^{Multi}$$
: Space \rightarrow Split_d Space

•
$$R_2^{Multi}$$
: $Space \rightarrow Split_e^{Space} \circ Split_d^{Space}$

•
$$\mathbf{R_c}^{\mathsf{Repeat}}: Space \rightarrow Split_c^{\mathsf{Space}^r} \circ \cdots \\ \cdots \circ Split_c^{\mathsf{Space}^r} \circ Split_c^{\mathsf{Space}}$$

Iterative Grammar-Based Approach

Iterative process of grammar application and grammar update

Grammar Application Procedural Modeling

Production process:

 Automatic generation of realistic hypotheses about 3D indoor geometries

L-System:

- Rule application in sequential order
- Termination when no branch can be further developed

Split grammar:

- SingleSplits for generating floors and hallways
- Constraint-augmented random walk on a Markov Random Field for generating room configurations

Iterative Grammar-Based Approach

Iterative process of grammar application and grammar update

Iterative Learning and Verification Process Results

Seamless transition from LOD3 to LOD4

Available data:

ifp

- LOD3 model
- 2D traces in the 4th floor
- 3D point cloud in the 4th floor

Iterative Learning and Verification Process Results

Seamless transition from LOD3 to LOD4

Grammar instantiation:

Initial L-System:

ifp

• lengths: |₁, |₂, |₃

• widths: W₁, W₂

• orientations: α_1 , α_2 , α_3

probabilities

control image

Derivation of initial L-System from 2D traces

Initial split grammar:

- $\mathbf{R_a^{Single}}: Space \rightarrow Split^{Space}(\mathbf{n_a} | d_a)$
- $\mathbf{R_f^{Single}}: Space \rightarrow Split^{Space}(\mathbf{n_f}|d_f)$
- Derivation of initial split grammar from LOD3 model
 - smallest room width ≥ smallest window width
 - floor height ≈ vertical distance between two vertically arranged windows

Iterative Learning and Verification Process Results

- Seamless transition from LOD3 to LOD4
- Grammar application:
 - Initial split grammar to generate floors
 - Initial L-System to generate hallway spaces and non-hallway spaces

 Initial split grammar to generate rooms in the 4th floor

Iterative Learning and Verification Process Results

- Seamless transition from LOD3 to LOD4
- Grammar update:
 - Enhanced split grammar

Enhanced split grammar:

- $R_a^{Single}: Space \rightarrow Split^{Space}(\mathbf{n}_a | d_a)$
- $\mathbf{R}_{\mathbf{b}}^{\mathsf{Single}} : Space \rightarrow Split^{Space}(\mathbf{n}_{\mathbf{b}} | d_{\mathbf{b}})$
- $\mathbf{R_c}^{Single}: Space \rightarrow Split^{Space}(\mathbf{n_c} | d_c)$
- $\mathbf{R_d}^{Single}: Space \rightarrow Split^{Space}(\mathbf{n_d} | d_d)$
- $\mathbf{R_f^{Single}}: Space \rightarrow Split^{Space}(\mathbf{n_f} | d_f)$
- $\mathbf{R}_{\mathbf{bc}}^{\mathbf{String}} : Space \rightarrow Split_{c}^{\mathbf{Space}^{\mathbf{r}}} \circ \cdots \circ Split_{b}^{\mathbf{Space}}$
- $R_{cb}^{String}: Space \rightarrow Split_b^{Space} \circ ...$... $\circ Split_c^{Space}$
- probabilities

Verification of 3D model

Iterative Learning and Verification Process Results

- Seamless transition from LOD3 to LOD4
- Grammar application:

Conclusions

- 3D indoor grammar to support the reconstruction of building interiors from crowd-sourced sensor data
- Individual grammars can be derived automatically from observation data
- Grammar can be integrated in continuous update and enhancement loop
- Robust and flexible grammar-based "hypothesis and testing"-approaches
- Approach for a seamless transition from LOD3 to LOD4

References

- **Becker, S., 2009**. Generation and application of rules for quality dependent façade reconstruction. ISPRS J. Photogrammetry and Remote Sensing, 64, pp. 640-653.
- **Gröger, G. and Plümer, L., 2010**. Derivation of 3D indoor models by grammars for route planning. Photogrammetrie-Fernerkundung-Geoinformation, 2010(3), pp. 193-210.
- Müller, P., Wonka, P., Haegler, S., Ulmer, A. and van Gool, L., 2006. Procedural modeling of buildings. ACM Trans. Graph., 25(3), pp. 614-623.
- Parish, Y.I.H. and Müller, P., 2001. Procedural modeling of cities. In Proc. 28. Ann. Conf. Comp. Graph. and Interactive Techniques. SIGGRAPH '01, pp. 301-308.
- Peter, M., Becker, S. and Fritsch, D., 2013. Grammar Supported Indoor Mapping. In Proceedings of the 26th International Cartographic Conference, 1-18. Dresden, 2013.
- Philipp, D., Baier, P., Dibak, C., Dürr, F., Rothermel, K., Becker, S., Peter, M. and Fritsch, D., 2014. MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data. Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), Budapest, Hungary, March 24-28, 2014, pp. 1-9.
- Prusinkiewicz, P. and Lindenmayer, A., 1990. The algorithmic beauty of plants, Springer New York.
- Stiny, G. und Gips, J., 1972. Shape grammars and the generative specification of painting and sculpture. Information Processing, 71:1460–1465.
- Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W., 2003. Instant architecture. In ACM SIGGRAPH 2003 Papers, pp. 669-677.