# Gestion des infrastructures souterraines aux Services Industriels de Genève Etude 3D

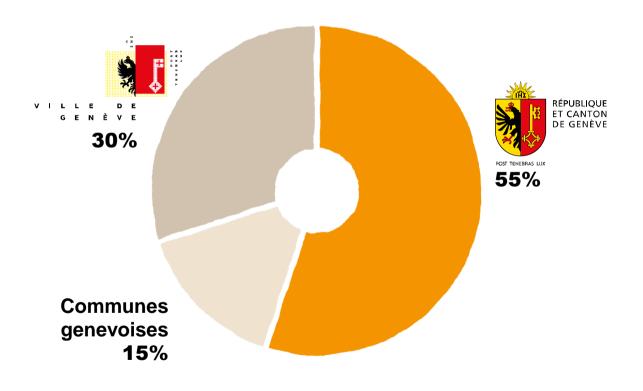
29 septembre 2016

Rodolphe FAHRNI Geo Project Manager





### Plan de présentation


- Services Industriels de Genève
  - Qui sommes-nous ?
- Les réseaux SIG
  - La gestion cadastrale des infrastructures
- - Etude de faisabilité

## Au service de 250'000 clients SIG 1'700 collaborateurs EFFICIENCE GAZ NATUREL ÉNERGÉTIQUE ÉLECTRICITÉ OEVELOPPEMENT OUR FIBRE OPTIQUE OF AVICE PUBLIC **DÉCHETS** THERMIQUE EAUX USÉES



## **Propriétaires**

- **Entreprise de droit public autonome**
- **IDENTIFY SET 100 IDENTIFY SE**





#### Cadastre des réseaux

#### **Prestations**



Gestion de la documentation cartographique intégrée au système d'information de SIG nécessaire aux études, travaux et interventions sur les réseaux

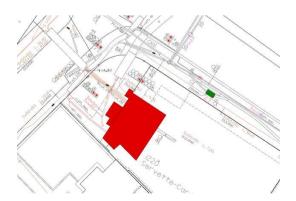
- Coordination des interventions de relevé multiréseaux
- Relevé sur le terrain et mise à jour dans le système d'information géographique des réseaux
- Mise à disposition des données en interne/externe à l'aide d'un guichet cartographique en respectant les engagements de service

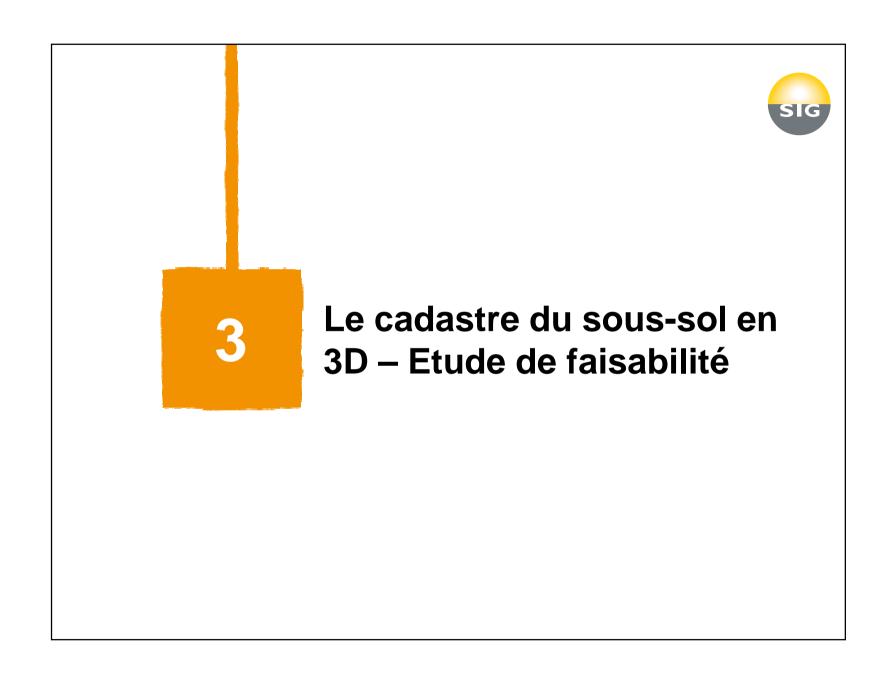


38 collaborateurs

5600 interventions par an

10'000 km de réseaux 200 km maj/an

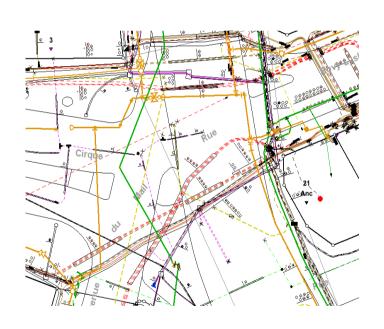

#### Cadastre des réseaux


#### Contexte et évolutions



- Respecter du règlement d'utilisation du domaine public (L1.10.12)
- Optimiser la diffusion des données cadastrales des réseaux
- Déployer une solution nomade pour la saisie sur le terrain
- Développer le relevé des réseaux à l'aide de la technique GNSS (GPS+GLONASS).
- Etudier les solutions d'acquisition de données en 3D










#### **POURQUOI?**

- La densité des réseaux difficile à gérer dans un cadastre en 2 D
- Le risque d'accident dû à la méconnaissance de la profondeur







- Faisabilité du cadastre du sous-sol 3D
- Procédures d'acquisition des mises à jour
- Bilan et perspectives

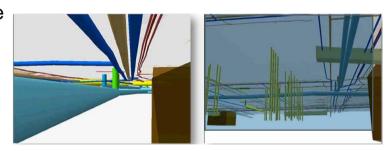




#### Avantages

- Améliore la vision et l'analyse en fonction de l'altitude
- Optimise la gestion multi-réseaux (intersections entre les objets)
- Facilite l'établissement de profils en long et en travers
- Aide à la planification des projets du sous-sol

#### Objectifs de l'étude

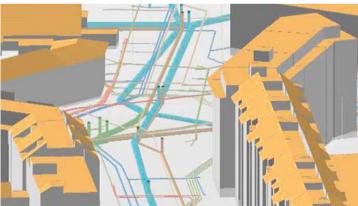

- Récupération des données disponibles
- Etudes attributaires et géométrique des données
- Procédures d'acquisition





#### 2D à 3D

- Informations disponible
  - Réseaux en 3D (Assainissement, Thermique et HT)
  - Réseaux en 2,5 D (Gaz )
  - Réseaux sans données altimétrique




- Méthode d'acquisition
  - Réseaux en 3D : Modélisation ( diamètre, valeur, symbole 3D )
  - Réseaux en 2,5 D: projection sur MNT calcul de l'altitude
  - Autres : Utilisation des données théorique de pose minimale



#### 2D à 3D

- Problèmes rencontrés
  - Fiabilité des informations Précision de la 3ème dimension à renseigner
  - Projection sur le MNT lissage nécessaire
  - Volume important de données
  - Modélisation et visualisation des données Norme AES – GEO405
  - Relevé des nouvelles canalisations



# SIG

#### Etude du cadastre 3D du sous-sol

#### Technique de relevé 3D

- Système de détection pour l'existant
  - Acoustique pour les réseaux rigides
  - Onde radio électromagnétique pour les réseaux électrique et telecomm ou au moyen d'un générateur électrique
  - Radar de sol
- La précision reste assez faible
- Technologie RFID
  - Marqueur passif contenant les caractéristiques de l'ouvrage
  - Données géométriques X,Y,Z précise (profondeur limité)
  - Permet un relevé en fin de chantier
- Nécessite un relevé géométrique et onéreux





Relevé en fouille ouverte reste la plus précise, mais contraignante



#### Relevé en fouille ouverte

- Méthodes
  - Acquisition par GPS en 3D
  - Acquisition par tachéomètre ( nivellement trigo ou altimétrique nécessaire )
  - Acquisition par arpentage (nivellement altimétrique nécessaire)
- A SIG 70 % des relevés sont effectués au GPS
- Autres méthodes (600 chantiers)
  - Nécessite un réseaux altimétrique dense
  - Définir des points GPS de référence
- **Etude d'acquisition par l'image**





#### **EVALUATION IMAGERIE- OBJECTIFS**

- Plus d'efficacité pour les relevés
- Vérifier la précision de cette technologie
- Permettre d'obtenir la 3 ème dimension
- Evaluer le traitement des big data générés par cette numérisation
- Systématiser l'utilisation de l'image dans la gestion de la cartographie

Evaluer le potentiel d'utilisations dans d'autres secteurs à SIG et au sein du SITG



# SIG

#### Etude du cadastre 3D du sous-sol

#### **MISE EN OEUVRE**

- Spécifications des interventions
  - Localisation du chantier : Rue Viollier, 1207 Genève
  - Matériel engagé : Caméra Eyesis 360°/4Pi 26 objectifs
  - Type de matériel : dos d'homme / montage spécial avec inclinaison à 45°
  - Données générées : ~1 To pour un chantier de 300 m

#### Réalisation

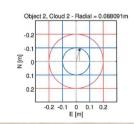
- Numérisation stéréo-photogrammétrique du chantier (4 passages)
- Alignement des données sur le système MN95
- Mise à disposition d'une interface de visualisation



# SIG

#### Etude du cadastre 3D du sous-sol

- Synthèse et résultats
  - Numérisation fouille exempte d'ouvrier
  - Utilisation d'une caméra inclinée à 45 degré et attention à la sur ou sous-exposition
  - Temps de numérisation: 25'










- Précision des mesures <= 10cm
- Amélioration de la précision en utilisant la technologie GPS





#### **ENJEUX**

#### Organisationnel

- Transformation des métiers
  - Numérisation sur les chantiers (capture d'image)
  - 🥯 Analyse et traitement de la donnée (Technicien en numérisation d'image!)
  - Utilisation des images pour d'autres usages ( suivi de chantier, métrés, .. )

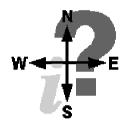
#### **Technique**

- Ressources
  - Une personne sur le terrain
  - Sécurité améliorée ( plus besoin d'accéder aux fouilles )
  - Qualité de l'information chantier disponible en tout temps
  - Disponibilité de la 3D sans mesures complémentaires





#### **BILAN ET PERSPECTIVES**


- Coût du processus 3D + 15% par rapport à 2D
- Technologie à industrialiser pour diminuer le coût
- Nécessite un gros temps de calcul
- Etude d'intégration des objets de réseaux dans l'environnement GIS
- Evolution vers une acquisition des chantiers avec un smartphone
- Possibilité de développer une interface «métier» novatrice et de réalité augmentée







#### Merci de votre attention



www.sig-ge.ch rodolphe.fahrni@sig-ge.ch